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Abstract

When applying the Cochran-Armitage (CA) trend test for an association between a candidate allele and
a disease in a case-control study, a set of scores must be assigned to the genotypes. SASIENI (1997,
Biometrics 53, 1253-1261) suggested scores for the recessive, additive, and dominant models but did
not examine their statistical properties. Using the criteria of minimizing the required sample size of the
CA trend test to achieve prespecified type I and type II errors, we show that the scores given by
SASIENI (1997) are optimal for the recessive and dominant models and locally optimal for the additive
one. Moreover, the additive scores are shown to be locally optimal for the multiplicative model. The
tests are applied to a real dataset.
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1. Introduction

To test for an association between a candidate allele and disease, SASIENI (1997)
showed that genotype-based Cochran-Armitage (CA) trend tests (COCHRAN, 1954;
ARMITAGE, 1955) are preferable to allele-based tests as they are valid whether or
not Hardy-Weinberg equilibrium (HWE) holds. To apply the CA trend test, scores
are assigned to each of these genotypes, where the choice of scores depends on
the underlying genetic model (SASIENI, 1997). Properties of tests using one set of
scores have been studied by SLAGER and ScHAID (2001) and FREIDLIN et al.
(2002). The need to specify the scores when using CA trend tests is a major con-
cern, when there is uncertainty about the model underlying the data (GRAUBARD
and KoRN, 1987; PODGOR et al., 1996; NEUHAUSER and HOTHORN, 1999).

For a given genetic model, we derive an optimal score, which minimizes the
required sample size for the CA trend test of size o to achieve power
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100(1 — B)%. The scores for the recessive and dominant models given by SASIENT
(1997) are shown to be optimal in this sense. For the additive model, however, the
score given by SASIENI (1997) is only locally optimal. We reparameterize the usual
family of genetic models by introducing a parameter determined by the underlying
genetic model. The optimal scores are functions of unknown parameters. So they
cannot be directly used in practice. Hence, we examine the performance of a
locally optimal score relative to the optimal one for a specific non-local alterna-
tive. This locally optimal score does not depend on unknown parameters. Simula-
tions for moderate sample sizes confirm that the additive scores are nearly as
powerful as the optimal scores for the multiplicative model.

The paper is organized as follows. The CA trend test and sample size are re-
viewed in Section 2. The reparameterization is introduced in Section 3. Optimal
scores are derived in Section 4. In Section 5, we compare the sample sizes based
on the optimal scores and the locally optimal scores. Simulation results are also
present in Section 5. A real dataset is analyzed in Section 6. Section 7 is a brief
discussion.

2. Review of Cochran-Armitage Trend Tests and Sample Size Calculations

The data available from a case-control study for candidate-gene association are
given in Table 1. Let A be a high risk candidate allele and a be a lower risk allele.
In Table 1, we assume that (ro, ry,r;2) and (sg, s1,s2) follow trinomial distributions
with probabilities for the genotypes aa, aA and AA equal to pg, p1, p2 and qo, g1,
q2, respectively. Let R=>"r; and S=>_s; be the sizes of two independent

1
random samples of cases and controls, rlespectively. The total sample size is
N = R + S. The null hypothesis of no association is Hy : p; = ¢g; for i = 0,1, 2.

To test Hy using a CA trend test, a score x = (xg,x1,X) is assigned to the
genotypes (aa,aA,AA) such that 0 < xp < x; < x, and x; > x9. SASIENI (1997)
assigned x = (0,0, 1) to the recessive model, x = (0, 1,2) to the additive model,
and x = (0,1, 1) to the dominant model. The intuition underlying the scores is the
following: for the recessive (dominant) model, the relative risks of the genotypes
aa (AA) and aA are the same, so the same score is assigned to aa and aA (for the
recessive model) or aA and AA (for the dominant model). For the additive model,

Table 1
Genotype distribution

aa aA AA Total

Cases 7o r r R
Controls 5o 1 52 S
Total no ny ny N
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the effect of aA should be the average of the effect of aa and AA, which is satis-
fied when the scores equal the number of A alleles in the genotype.
Given a score x, the standardized CA trend test is Z = U/ {@HO(U)}I/ ® where

2
U=> x/(Sr;—Rs;)/N and
i=0

2
Gatn, (U) = ]% [Né)xizn,- - (é)x,-n,—) ] (1)

Under the null hypothesis Hy, Z has an asymptotic standard normal distribution.
In Appendix A, we show that, under the alternative hypothesis H,, Ey (U) > 0.
Thus, we consider one-sided CA trend tests, and reject the null hypothesis of no
association when Z > z;_q, where z,, is the pth percentile of a standard normal
distribution and a is the significance level. The CA trend test is a function of the
scores but it is invariant to a linear transformation of them (TARONE and GART,
1980). Hence, CA trend tests based on scores x = (xp,x1,x;) and x = (0,1, 1),
where 1 = (x; — x9)/(x2 — xo) are the same.

From FREIDLIN et al. (2002), for testing Hp : p; = g; for i =0,1,2, at signifi-
cance level a to achieve power equal to 100(1 — )%, the required sample size
for Z with the set of scores x = (xg, X1, x2) is approximately

L 2) 12 2
N=|zu 1+ (%) +21 ﬁ<%> (2)
Ma Mo/ |

2
where u, = (RS/N*) X" x:i(pi — q.),
i=0

, RS? [ 2 2 2 ?] 2 2 2 ?]
0, =% inpi — inpi +—3 in qi — inQi ) (3)
N _t:0 i=0 N _t=0 i=0

L, Rs[a 2\ (2 NN
0, = —5 Z X;p; — Z Xipi + 3 Z X qi — Z Xigi . (4)
N° =0 =0 N° iz i=0

3. A Family of Genetic Models

Denote the penetrances for the genotypes aa, aA and AA by fy, fi and f5, respec-
tively, where f; = Pr (case | i A alleles). As A is the candidate high risk allele, we
assume fo > fi > fo > 0. Let h; = 1 — f; = Pr(control | i A alleles), for i = 0,1,2;
note that A; is the probability of being non-diseased given i A alleles. Let K de-
note the disease prevalence and vy, = f;/fo and &; = h;/hy be genotype relative
risks, i =1,2. Define the population genotype probabilities as go = Pr(aa),
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g1 = Pr(aA) and g, = Pr (AA). With this notation, p; and g; can be expressed as
_JSigi _ Vi A-f)e&_ b (5)
oK " T va 1-K 3 o’
i i
where v, = 89 = 1. The null hypothesis of no association can also be stated as
H03Y1=Y2:1,i-e-,H0561 =62=1.

The three common genetic models are specified by y, = 1 for the recessive
model; y; = vy, for the dominant model, and 2y, = 1 + v, for the additive model.
Specific models with genotype relative risks y, and y, form a class denoted by
Qy ={(v1,v2) : 1 <v; <v,}. The null hypothesis corresponds to Hp : (Y;,7Y,)
= (1,1) € Qy and the possible alternative hypotheses are H, : (y;,v,) € @, — (1, 1).
In practice, we do not know the values of y; and v,. For recessive, dominant and
additive models, y; and y, follow a linear relation, so they can be specified by a
ray from the null value (1,1) (Figure 1). In Figure 1, x (y) axis corresponds to v,
(y,). From Figure 1, under the alternative hypothesis, possible recessive (REC),
additive (ADD), and dominant (DOM) models correspond to points on the rays
OA, OC, and OD, respectively.

and qi =

8 A B
REC(v,=1)
6 —]
ADD (7,=2y,~1)
DOM (v,=1)
4 —
2 -
LO I
(1,1)
0 T T T |

Fig. 1. The family of genetic models and the reparameterization
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Note that a genetic model is a function of two relative risks y,; and v,. For each
genetic model, there is a corresponding optimal test statistic. We introduce a repar-
ameterization, which simplifies the calculation of the optimal test statistic for any
genetic model.

Let P = (v,Y,) be the true relative risks in &, and (y;,y,) # (1,1). Let the
distance between O = (1,1) and P be r > 0 and 6 be the angle between OP and
the horizontal line (the dashed 11ne in Figure 1) Then y, =1+ rcos6 and
Y, =1+ rsin @, where > = (y, — 1) + (y, — 1)* and 6 € [n/4,7/2] (Figure 1).
Thus we can express the null and alternative hypotheses as Hy:r =0 and
H, : r > 0, respectively, where 0 is a parameter which is determined by the under-
lying genetic model. Given any (y,Y,) €Q, and (y,,Y,) # (1,1),
0 = cot™![(y, — 1) /(y, — 1)]. For example, we have 6 = n/2 for the recessive
model, 6 = cot™!(1/2) (= 63.5°) for the additive model, and © = ;/4 for the
dominant model. Hence, we only need to derive an optimal test statistic assuming
8 is known. For a specific genetic model, we replace 8 with the corresponding
known value to obtain the optimal test statistic for that genetic model. Further,
when the underlying genetic model is unknown, robust inference for candidate-
gene association between genetic marker and trait can be focused on this family of
genetic models where 0 can be treated as an unknown parameter (e.g., WHITTE-
MORE and Tu, 1998; GASTWIRTH and FRrEIDLIN, 2000; SHIH and WHITTEMORE,
2001; FrREIDLIN et al., 2002). More discussion of this reparameterization is given
in Appendix B.

4. Optimal Scores for Cochran-Armitage Trend Tests

For the genetic model defined by a specific 8 € [r/4,7/2], a score x = (0,n, 1),
M € [0,1] is optimal if the sample size N for a test based on it minimizes the
required sample size for any CA trend test (Z) achieving the same power. Since N
given by (2) is a continuous function of 1 € [0,1], there exists an 1 € [0,1] at
which N is minimized. By a numerical search over 1 = 0(0.001)1, one obtains the
optimal score, defined by 1), that minimizes the sample size for the assumed
genetic model.

When R =S5, analytlcal results can be found. From (3) and (4), if R=3S,
02 = 2. If Y2 < 02, then we can apply a Taylor expansion to {1 + (u,/0,) }1/ 2
in 2), yielding N = (z1-0 + 21— [3) (0a/ )"+ 21-a(Z1—a + 21— g), where the error
term of the approximation is O((u,/0,)"). For most genetic applications, FREIDLIN
et al. (2002) showed that (2) and the approximation yield the exact same sample
sizes for any scores. The benefit of using the approximation is that, if R = S, we
only need to minimize o2/u? to find the optimal score.

The proof of the following result is given in Appendix C.
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Theorem 1: Under Hy, for any given 0 € [rt/4, 75/2JK and score x = (0,1, 1),
02/uZ is minimized for any R and S if and only if = 1", where

« _RK(1—f) +Sh(1 - K)

RK(1—fi) + Sfi(1 - K)

Moreover, if R = S, N is minimized when 7 = n*, a strictly convex function of 1.

cotO. (6)

Corollary 1: Under the same condmons of Theorem 1, G2/u2 is minimized for
any R and S if and only if 1 = 1**, where

sk _ SK(1—-f,) + R>(1 - K)
SK(1—fi) + Rfi(1 - K)

The proof of Corollary 1 is similar to that of Theorem 1.
Since K=)figg and 1-K=> (1-f)g, from (5), f/(1-Ff)

12 i
=Kpi/[(1 - K) qi], ie., fi=Kp;i/lqi+ K(p; — q;)]. Hence (6) can also be ex-
pressed as

s Rq, + SPz) [611 +K(p1 — 6]1)}
= cotO. 8
(qu +Sp1) |92 + K(p2 — q2) ®)

When R = S, Theorem 1 gives an optimal score x* = (0,n*, 1) that minimizes
the required sample size N of the CA trend test achieving a pre-set size and power
of the test for the genetic model specified by 0. The optimal scores, however,
depend on unknown parameters K and p;, ¢;, so they cannot be calculated. The
scores of SASIENI (1997) for the recessive, additive (multiplicative), and dominant
models can be written as x = (0,cot8, 1), where 6 = x/2,cot "1(1/2), and m/4,
respectively. For any given 6 € [r/4,7/2], we are interested in when the scores
x = (0,cot 8, 1) can be used. The following result gives the condition (the proof is
given in Appendix D).

cot0. (7)

Theorem 2: Under H,, 0 € [n/4,x/2] is given. Consider the score x = (0,1, 1).
For any R and S,
(i) If © = /4 or 6 = m/2, 02/u2 is minimized if and only if 1) = cot 0.
(i) If 6 € (n/4,7/2), say, O = cot™1(1/2) (the additive model), and 1 = cot 8
is used, then 02/u2 is minimized if and only if R/S = (1 — K)/K.

From Theorem 2, when R = §, the scores x = (0,0,1) and x = (0,1,1) of Sa-
SIENT (1997) for the recessive and dominant models are optimal. For the additive
model, when R = S, the score x = (0,1/2,1) used by SASIENI (1997) is not neces-
sarily optimal. In the following, we consider the recessive and dominant models
for any R and S. Note that N given by (2) depends on Ga/ Mg > 0 and o, / My > 0
The score yleldmg a test that minimizes o2/p2 (52/u2) is given by n* M**).
When n* =n**, that score minimizes N and is opt1ma1 From (6) and (7), when

=m/2 (recesswe model), both &2/u2 and o2/u’ are minimized when
x=(0,0,1), ie., n* = n** = 0. On the other hand, if 6 = /4 (dominant mod-
el), then f; = f5, so * = n™* = 1. Hence we obtain:
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Corollary 2: Under H,, the scores x = (0,0, 1) and x = (0,1, 1) are optimal for
the recessive and dominant models, respectively, for all values of R and S.

For 0 € (m/4,7/2) and any R and S, we consider a local property of the score
x = (0,cot 0, 1). Under Hy, p; = g; for i = 0,1,2. Hence, defining a local alterna-
tive hypothesis as p; = q; + c;N~'/2 = g; + O(N~1/2) for some constant ¢; and
i=0,1,2, we have:

Theorem 3: Suppose p; = g; + O(N"'/?) and 6 € (w/4,7/2) is given. Let
x* = (0,m%1) and x™* = (0,1™*, 1) be the scores minimizing o2/u2 and &2/u2,
respectively. Then n* = cot 8 + O(N~1/2) and n** = cot6 + O(N‘[i/z) and the
score x = (0, cot 6, 1) is locally optimal for 6 € (5t/4, n/2) for all values of R and S.

We describe the optimal scores (6) under R =S and HWE for the additive
model (cot0 = 0.5) and other genetic models defined by cot®. We choose
r=20.5, 1.0, 2.0, 5.0 for alternative hypotheses, and cot 6 = 0.05, 0.20, 0.33,
0.50, 0.75, 0.95. Note that cot © = 0.05 and 0.95 are close to the recessive and
dominant models, respectively, when r is close to 0. The values of (y,,Yy,) calcu-
lated from y; = 14 rcos6 and y, = 1 + rsin 6 are given in Table 2.

Table 2 shows that as r increases the models specified by cot 6 = 0.05 and 0.95
move further from the fully recessive (y; = 1) and dominant (y, = v,) ones, re-
spectively. However, for moderate values of r, the genotype relative risks remain
near to their values under the dominant and recessive models. Thus, locally opti-
mal tests should have reasonable power for models in a fairly large neighborhood
of the null.

Optimal scores for various models are presented in Table 3. The results in Ta-
ble 3 show that the optimal scores for a specific genetic model hardly change as K
and p vary. For local alternatives, e.g., r = 0.5, 1™ ~ cot 8. Overall, the optimal
score N* is an increasing function of r when K and p are fixed. When r is fixed,
n* is a decreasing function of K or p. When r is at least 2.0, the difference
between n* and cot 0 is noticeable for the additive (cot ® = 0.50) and near reces-
sive models (cot 8 = 0.05), while the value of 7]* for near dominant models
(cot O = 0.95) remains close to the locally optimal 1} = cot 6.

Table 2
Genotype relative risks (y,,7Y,) for genetic models specified by r and 6

r True model cot 6
0.05 0.20 0.33 0.50 0.75 0.95
(Y1, Y2) (Y1,Y2) (Y1, Y2) (Y1, Y2) (Y1r¥2)  (Yi>v2)

0.5 (1.025, 1.5) (1.098, 1.49) (1.157, 1.475) (1.224, 1.447) (1.3, 1.4) (1.345, 1.363)
1.0 (1.05,20) (1.196,1.98) (1.313,1.948) (1.447, 1.894) (1.6, 1.8) (1.689, 1.725)
20 (110, 3.0) (1.392,2.96) (1.626,2.897) (1.894, 2.788) (2.2, 2.6) (2.378, 2.451)
50 (1.25,6.0) (1.980,5.90) (2.565,5.742) (3.235, 5.470) (4.0, 5.0) (4.490, 4.670)
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Table 3
Optimal scores n* for the given model when R = § and HWE holds

r K p True model cot 8

0.05 0.20 0.33 0.50 0.75 0.95

05 0.01 0.01 0.062 0.237 0.379 0.551 0.782 0.958
0.50  0.061 0.234 0.375 0.546 0.779 0.957

0.10 001 0.060 0.233 0.374 0.546 0.779 0.957

0.50 0.060 0.231 0.370 0.542 0.776 0.956

1.0 0.01 0.01 0.073 0.271 0.420 0.590 0.807 0.963
050  0.070 0.261 0.407 0.576 0.798 0.961

0.10 0.01 0.071 0.264 0.412 0.583 0.802 0.962

0.50  0.068 0.255 0.399 0.569 0.793 0.960

20 0.01 0.01 0.095 0.330 0.488 0.652 0.842 0.970
050  0.085 0.301 0.452 0.617 0.821 0.965

0.10 0.01 0.090 0.318 0.475 0.641 0.836 0.969

0.50 0.081 0.290 0.439 0.605 0.814 0.964

5.0 0.01 0.01 0.154 0.460 0.620 0.760 0.898 0.982
0.50 0.115 0.365 0.517 0.671 0.849 0.972

0.10 0.01 0.145 0.441 0.602 0.746 0.891 0.980

050  0.106 0.346 0.497 0.654 0.840 0.970

5. Comparison of the Required Sample Size and Power of the Locally Optimal
and Optimal Scores

As the sample size formula (2) and its approximation are based on large sample
theory, the loss of power incurred by using the locally optimal score (0, cot 6, 1)
instead of the optimal one should be examined. First, we compare sample sizes
based on different scores when cot© = 0.05, 0.20, 0.33, 0.50, 0.75, 0.95 and
r =2.0,5.0 when R =S and HWE holds. Table 4 reports the results. When cot 6
is relative large, say, cot © > 0.20, the sample sizes based on the locally optimal
scores x = (0,cot 0, 1) are very close to the sample sizes based on the optimal
scores x* = (0,1, 1). When cot © = 0.05 and p = 0.01, the sample size based on
the optimal score is somewhat smaller than the sample size based on the locally
optimal score. Overall, for a high risk allele of moderate frequency, say, p > 0.1,
the sample sizes based on the optimal and locally optimal scores are quite close.
As optimal scores cannot be calculated in most applications, Table 4 suggests that,
given the genetic model, the locally optimal score can be used when p > 0.1.
When R # S, neither x™ = (0,1*,1) nor x** = (0,1**, 1) are the optimal score
for N. In this case, we compare the locally optimal score x = (0,cot 6,1) and the
optimal score x = (0, ", 1) obtained by numerical search over n = 0(0.0001)1
for a given model, the same parameters as Table 4 are used and R/N = 0.35. The
results are similar to those in Table 4, so they are not reported here. When R = S
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and p > 0.1, the sample sizes based on locally optimal scores x = (0,cot 0, 1) are
quite close to those based on optimal scores.

We conducted a simulation comparing the CA tests with the optimal score and
the locally optimal score when R = S for the additive and multiplicative models.
We assume the values of vy,, the prevalence K and allele frequency p are known,
and calculate marginal probabilities for genotypes g; under HWE and
Y, =2y, — 1 (the additive model) and vy, = y? (the multiplicative model). The
values of f; are then calculated by fy = K/ v,g; and f; = v,f;. We generate two

independent trinomial distributions of sizes R and S (R = S = N/2) with probabil-
ities p; and g;, i = 0, 1,2, given by (5). For the additive model, the CA trend tests
are calculated using the optimal score n* given by (8), where cot 8 = 0.5 and the
locally optimal score 1 = 0.5. For the multiplicative model, we calculate CA trend
tests based on the optimal score * given by (8), where cot6 = (1 +Yl)—1, the
locally optimal score m, =cot8 = (1 + Yl)_l and the additive score m, = 0.5.

Table 4

Sample sizes to achieve 80% power for one-sided CA trend test for the size o = 0.05 when
R = § and HWE holds

r K p cot0 = 0.05 cot0 = 0.20 cot0 =0.33
n=0.05 n* n=020 n* n=0.33 n*
20 001 001 68902 63,019 9,307 9,072 4,118 4,090
0.50 100 100 140 139 175 171
0.10 0.01 54,594 50,566 7,524 7,360 3319 3,300
050 81 81 114 113 144 141
50 001 001 17,786 13,556 1,998 1,859 919 903
050 39 39 60 58 77 73
0.10 001 13,757 10,796 1,584 1,484 726 714
050 31 31 48 47 63 61
r K D cot® =0.50 cot® =0.75 cot® =0.95
n=0.50 n* n=075 n* n=095 n*
20 001 001 2255 2,252 1,397 1,397 1,123 1,123
050 210 204 226 224 222 222
0.10  0.01 1,807 1,805 1,112 1,112 891 891
050 174 170 190 189 188 . 188
50 001 001 537 535 355 355 290 290
0.50 94 88 99 97 97 96
0.10 001 421 420 276 276 225 225
0.50 78 74 85 83 83 83

n* is the optimal score for the given model (Table 3).
1 s the locally optimal score for the given model.



344 G. ZHENG et al.: Choice of Scores for Trend Tests

Table 5

Empirical power of one-sided CA trend tests with the optimal and locally optimal scores for
the size a = 0.05 when R = S and HWE holds

Yi K D N Additive Multiplicative
n n n Mo M
1.0 0.01 005 200 0.051 0.051 0.052 0.052 0.052
0.10 200 0.049 0.049 0.052 0.052 0.052
0.30 200 0.053 0.053 0.051 0.051 0.051
2.0 0.01  0.05 200 0.529 0.527 0.555 0.550 0.554
0.10 200 0.728 0.723 0.777 0.763 0.776
030 200 0.886 0.879 0.958 0.948 0.958
0.10 0.05 200 0.611 0.611 0.639 0.632 0.638
0.10 200 0.809 0.806 0.847 0.842 0.847
030 200 0.936 0.932 0.981 0.978 0.981
30 001 005 100 0.661 0.656 0.703 0.683 0.700
0.10 100 0.832 0.828 0.891 0.857 0.893
0.30 100 0.916 0.902 0.986 0.976 0.985
0.10 0.05 100 0.749 0.747 0.795 0.792 0.795
0.10 100 0.902 0.900 0.949 0.941 0.950
030 100 0.952 0.944 0.996 0.993 0.996

nzna=0-5 andne=1/(1+Y1)

The empirical power is defined as number of times in 20,000 replications the
value of the test statistic is greater than the critical value (1.6449). The results are
presented in Table 5.

When vy, =1 (the null hypothesis), from Theorem 3, n*=1n=05
(n* = N, = N, = 0.5) for the additive (multiplicative) model. Hence, the type I
errors of the CA trend tests with n* and  (n*, m, and ) for the additive (multi-
plicative) model should be equal. From Table 5, the locally optimal score 1 = 0.5
for the additive model is nearly as powerful as the optimal ones for either the
additive or multiplicative models.

6. Application

In this section, we apply the results to real data. Liu et al. (2000) conducted a
case-control study to examine the association between the variation at the IL13
gene and atopic dermatitis (AD). The cases consisted of 187 patients from MAS-90
patients with AD and the controls were 98 members of the study population without
AD. The data from Liu et al. (2000) is given in Table 6 (A is the candidate allele).
Penetrance analysis suggested that the genetic model underlying the data in Table 6
is dominant, and the two-sided tests (Pearson y? and Fisher exact) were applied
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Table 6
Genotype distribution of the /L13 4257 G/A polymorphism

GG GA AA Total

AD 105 72 10 187
Non-AD 68 24 6 98
Total 173 96 16 285

P-values for the CA trend tests

M P-values
One-sided Two-sided

0.0 0.6064 0.7872

0.5 0.0478 0.0956

1.0 0.0149 0.0297

yielding p-values 0.059 and 0.057, respectively (L1 et al., 2000). Applying CA
trend tests for several 1 (0.0, 0.5, 1.0) to the data gave the p-values presented in
Table 6. The results depend on the assumed model with their different scores.

Although the natural alternative hypothesis for CA trend tests with a candidate-
gene is one-sided (Appendix A), to compare our analysis with that of Liu et al.
(2000), we also consider two-sided CA trend tests. Table 6 shows p-values of the
CA trend test using the optimal score for the dominant model 1 = 1.0 (when
R # S) are more significant than either the Pearson y? test or Fisher exact test.
Indeed, the optimal CA trend test shows that the association between having an A
allele and AD is significant.

7. Discussion

In this paper, a single parameter is used to describe a family of genetic models
and an optimal score for the corresponding CA trend test minimizing the sample
size required to achieve a prespecified size and power of the test when R = § is
derived. The locally optimal score test for any R and S is also obtained. The
results show that the scores of SASIENI (1997) for the recessive and dominant
models yield optimal tests while his scores for the additive model corresponds to a
locally optimal test. Our parameterization shows that the multiplicative model
always lies in between the recessive and additive models and is asymptotically
equivalent to the additive model. Examining the performance of locally optimal
score (n = 0.5) for the additive model indicates that it is nearly as powerful as the
individual optimal tests. Thus, this commonly used test does not incur a noticeable
decrease in power.
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Appendix A: Proof that Ey (U) > 0

Note Eg, (U) = Np,. Let x = (0,m,1) and v = R/N. Then
e =y(l—vy) Z,: xi(pi — g:)] = w(1 = W)[(p2 — g2) — (g1 — p1)].

FromO0 < fy <fi <fp < 1,itis ealsy to verify that, under H,, fy < K < f>. From (5),
P2—qx = (fz —K)gz[K(l -—K)]_ > 0 and P1—q1 = (f] - K)gl[K(l — K)]_l. If
p1—q1 > 0, then p, > 0. When p; — ¢; <0, ie., fi < K. Hence

Kgo > fogo & Kgo + /282 + 181 > fogo + 282 + f181 = K = Kgo + Kg1 + Kg»
< hert+fis1>Kai+Kgr e (h—-K)g>(K—fi)g1>0

(K —f1) &1

Since g1 —p1 > 0, (p2 — q2)/(q1 — p1) > M, which implies (p; — ¢2) — (g1 — p1)
> 0. Thus, p, > 0.

Appendix B: Reparameterization

The family of genetic models defined by 6 does not automatically include the
multiplicative model, which is defined as y, =3 (curve OB in Figure 1). The
multiplicative model is locally equivalent to the additive one. Given any
(Y1,Y2) € Qy such that v, = y2, we have cot® = (1 +7v,)”". Hence the multipli-
cative model is a function of O and vy,. For the multiplicative model,
0 € [cot ~1(1/(1 +v,)),n/2] for any vy, > 1. This reparameterization shows that
the multiplicative model always lies between the additive and recessive models, as
the right end point of [cot ~!(1/(1 + v,)), ®/2] corresponds to the recessive model
and the left end point corresponds to the additive model when y; = 1. As y; — 1,
the multiplicative parameters (Yy;,Y,) — (1,1) and cot® — 1/2. Thus, the multi-
plicative model approaches the additive one and the score for the additive model
is locally optimal for a multiplicative model.
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Appendix C: Proof of Theorem 1

We find the score x = (0,7, 1) such that 02/u? is minimized. Let

Mi(m) = (p2 — q2) —(q1 — p1)

My(n) = [(1 = w) p1 — (1 = ¥) p} + va1 — vq?)
—20[(1 — ) p1p2 + vq142]
+[(1=v)p2— (1) P + va2 — vg3] .

From (3), it can be shown that p, = y(1 — y) M;(n) and 02 = y(1 — \|/) M,(n).
Given v, the problem is to find M € [0,1] such that N* Mz(n) /M3(n) is mini-
mized. By differentiating N* with respect to v, we have

0. (n)a%Mz(n) - 2Mz(n)-a%M1 m)
o Mi(n) ’

0
where %Ml (M) =p1 —q1 and

%Mz(ﬂ) =2[(1 = y) p1(1 = p1) +wqi(1 = q1))] = 2[(1 = ¥) p1p2 + Yq142] .

After some algebraic manipulation, we obtain

9y _ 2lvar + (1 = v) pi] (Pago — Poga) = 2[vg2 + (1 — ¥) p2] (P1go — Pogn)
& M3(n) ’
where M;(n)) > 0 (Appendix A) and, from (5),

P290 — Pog2 = fo(1 — fo)gog2(v, — 82)/[K(1 — K)] > 0

and
P190 — poq1 = fo(1 — fo)gog1 (v, — &1)/[K(1 = K)] > 0.

: 0 : . :
Hence, if we set —N™* = 0 and use (5), we obtain a unique solution

on
* _ [\VCIz + (1 —vy) Pz} lgl(\h — 61)} _ [RK(I —f)+S(1-K)f cot 6
a1 + (1 =) p1] [82(v, — 82)] [RK(1—fi) +S(1-K)fi

where vy, — 61 (v, — 62) cot 0. Since n* > 0, if we show n* < 1 then n =n*
minimizes N*. To prove n* < 1, recall cot® = (f; — f3)/ (o — fo), s

« _RK(1—-1) (i —fo) + 51 - K) /(i —fo) <1
RK(1-fi) (o =fo) +SA=K)filh —fo) ~

because (1 —fo) (fi —fo) =2 (1 = A1) (b —fo) and L (fi —fo) > fila = fo)- 0
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Appendix D: Proof of Theorem 2

Case (i) follows from Theorem 1 and cot® = 0 when 8 = xt/2, and cot® = 1 and
A =fi when O0=mn/4. For case (ii), from (6), we need to show
RK(1-f)+S(1-K),=RK(1-£1)+S(1 —K)fi, which is equivalent to
S(h—fi)=RK(, —fi) +SK(, —f1), ie, S=RK+SK, where f,>f; as
cot = (i —fo)/ (e — fo) < 1. O
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